The Problem of Two Fixed Centers: Bifurcations, Actions, Monodromy
نویسندگان
چکیده
A comprehensive analysis of the Euler-Jacobi problem of motion in the field of two fixed attracting centers is given, first classically and then quantum mechanically in semiclassical approximation. The system was originally studied in the context of celestial mechanics but, starting with Pauli’s dissertation, became a model for one-electron molecules such as H2 (symmetric case of equal centers) or HHe 2+ (asymmetric case of different centers). The present paper deals with arbitrary relative strength of the two centers and considers separately the planar and the three-dimensional problems. All versions represent nontrivial examples of integrable dynamics and are studied here from the unifying point of view of the energy momentum mapping from phase space to the space of integration constants. The interesting objects are the critical values of this mapping, i. e., its bifurcation diagram, and their pre-images which organize the foliation of phase space into Liouville-Arnold tori. The classical analysis culminates in the explicit derivation of the action variable representation of iso-energetic surfaces. The attempt to identify a system of global actions, smoothly dependent on the integration constants wherever these are non-critical, leads to the detection of monodromy of a special kind which is here described for the first time. The classical monodromy has its counterpart in the quantum version of the two-center problem where it prevents the assignments of unique quantum numbers even though the system is separable. PACS: 05.45.-a Nonlinear dynamics and nonlinear dynamical systems 03.65.Sq Semiclassical theories and applications 31.10.+z Theory of electronic structure, electronic transitions, and chemical binding
منابع مشابه
Monodromy problem for the degenerate critical points
For the polynomial planar vector fields with a hyperbolic or nilpotent critical point at the origin, the monodromy problem has been solved, but for the strongly degenerate critical points this problem is still open. When the critical point is monodromic, the stability problem or the center- focus problem is an open problem too. In this paper we will consider the polynomial planar vector fields ...
متن کاملAdaptive policy of buffer allocation and preventive maintenance actions in unreliable production lines
The buffer allocation problem is an NP-hard combinatorial optimization problem, and it is an important design problem in manufacturing systems. The research proposed in this paper concerns a product line consisting of n unreliable machines with n − 1 buffers and a preventive maintenance policy. The focus of the research is to obtain a better trade-off between the buffer level ...
متن کاملthe predator-prey discrete system codimention- 2 bifurcations
A discrete predator-prey system is presented. We study the existence and stability of the fixed point system. The conditions of existence of Flip and Neimark-sacker bifurcation is the system are derived. By using numerical continuation methods and MatContM toolbox. We compute bifurcation curves of fixed points and cycles with periods up to 32 under variation of one and to parameters, and comput...
متن کاملContinuation of Bifurcations in Periodic Delay-Differential Equations Using Characteristic Matrices
Abstract. In this paper we describe a method for continuing periodic solution bifurcations in periodic delaydifferential equations. First, the notion of characteristic matrices of periodic orbits is introduced and equivalence with the monodromy operator is proved. An alternative formulation of the characteristic matrix is given, which can efficiently be computed. Defining systems of bifurcation...
متن کاملSimulation study of Hemodynamic in Bifurcations for Cerebral Arteriovenous Malformation using Electrical Analogy
Background and Objective: Cerebral Arteriovenous Malformation (CAVM) hemodynamic is disease condition, results changes in the flow and pressure level in cerebral blood vessels. Measuring flow and pressure without catheter intervention along the vessel is big challenge due to vessel bifurcations/complex bifurcations in Arteriovenous Malformation patients. The vessel geometry in CAVM patients are...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004